449 research outputs found

    In Vivo Delivery of Lenti-Cre or Adeno-Cre into Mice Using Intranasal Instillation

    Get PDF
    Lung cancer remains the leading cause of cancer deaths among both men and women, with a lower rate of survival than both breast and prostate cancer. Development of the Cre/lox system and improved mouse models have allowed researchers to gain a better understanding of human disease, including lung cancer. Through the viral delivery of Cre, gene function in adult mice can be precisely studied at a specific developmental stage or in a specific cell/tissue type of choice. This protocol describes how to produce adenovirus-Cre precipitate. Using this adeno-Cre (or lentivirus-Cre), Cre can be expressed in mouse lungs. The virus is delivered by intranasal instillation

    Strategies to Achieve Conditional Gene Mutation in Mice

    Get PDF
    The laboratory mouse is an ideal model organism for studying disease because it is physiologically similar to human and also because its genome is readily manipulated. Genetic engineering allows researchers to introduce specific loss-of-function or gain-of-function mutations into genes and then to study the resulting phenotypes in an in vivo context. One drawback of using traditional transgenic and knockout mice to study human diseases is that many mutations passed through the germline can profoundly affect development, thus impeding the study of disease phenotypes in adults. New technology has made it possible to generate conditional mutations that can be introduced in a spatially and/ or temporally restricted manner. Mouse strains carrying conditional mutations represent valuable experimental models for the study of human diseases and they can be used to develop strategies for prevention and treatment of these diseases. In this article, we will describe the most widely used DNA recombinase systems used to achieve conditional gene mutation in mouse models and discuss how these systems can be employed in vivo

    Whole-Mount X-Gal Staining of Mouse Tissues

    Get PDF
    Although the development of improved mouse models, including conditional deletions, marks an exciting time in mouse genetics, it is important to characterize and validate these models. Cre reporter strains allow researchers to assess the recombinase expression profile and function in individual Cre mouse lines. These strains are engineered to express a reporter gene (usually LacZ) following the removal of a floxed STOP cassette, thus marking cell lineages that can be targeted with a given Cre line. This protocol provides a detailed method for the histochemical detection of β-galactosidase activity in Cre mouse strains

    Producing and Concentrating Lenti-Cre for Mouse Infections

    Get PDF
    Lentiviral vectors offer versatility as vehicles for gene delivery. They can transduce a wide range of cell types and integrate into the host genome, which results in long-term expression of the transgene (Cre) both in vitro and in vivo. This protocol describes how lentiviral particles are produced, purified, and concentrated

    Skeletal muscle transcriptional coactivator PGC-1alpha mediates mitochondrial, but not metabolic, changes during calorie restriction

    Get PDF
    Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation, and reactive oxygen species (ROS) scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1alpha is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1alpha activity. To test this model, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1alpha (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1alpha is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy (EM) demonstrated that PGC-1alpha is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1alpha is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1alpha nor mitochondrial biogenesis in skeletal muscle are required for the whole-body metabolic benefits of CR

    Inducible and reversible inhibition of mirna-mediated gene repression in vivo

    Get PDF
    Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss of function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events

    Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice

    Get PDF
    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b[superscript −/−]) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b[superscript −/−] mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b[superscript −/−] mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation–reduction in altered PUFA and triglyceride metabolism.Pfizer Inc. (grant)National Institutes of Health (U.S.) (grant 5R24DK090963)National Institutes of Health (U.S.) (grant U54-CA112967)National Institutes of Health (U.S.) (grant CA49152 R37)National Institutes of Health (U.S.) (grant R01-DK080756)National Mouse Metabolic Phenotyping Center at UMASS (Grant (U24-DK093000))National Science Foundation (U.S.) (Graduate Research Fellowship

    BAY61-3606 Affects the Viability of Colon Cancer Cells in a Genotype-Directed Manner

    Get PDF
    Background: K-RAS mutation poses a particularly difficult problem for cancer therapy. Activating mutations in K-RAS are common in cancers of the lung, pancreas, and colon and are associated with poor response to therapy. As such, targeted therapies that abrogate K-RAS-induced oncogenicity would be of tremendous value. Methods: We searched for small molecule kinase inhibitors that preferentially affect the growth of colorectal cancer cells expressing mutant K-RAS. The mechanism of action of one inhibitor was explored using chemical and genetic approaches. Results: We identified BAY61-3606 as an inhibitor of proliferation in colorectal cancer cells expressing mutant forms of K-RAS, but not in isogenic cells expressing wild-type K-RAS. In addition to its anti-proliferative effects in mutant cells, BAY61-3606 exhibited a distinct biological property in wild-type cells in that it conferred sensitivity to inhibition of RAF. In this context, BAY61-3606 acted by inhibiting MAP4K2 (GCK), which normally activates NFκβ signaling in wild-type cells in response to inhibition of RAF. As a result of MAP4K2 inhibition, wild-type cells became sensitive to AZ-628, a RAF inhibitor, when also treated with BAY61-3606. Conclusions: These studies indicate that BAY61-3606 exerts distinct biological activities in different genetic contexts
    • …
    corecore